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Stereocontrolled synthesis of the HIJ ring system of ciguatoxin

Tohru Oishi, Kenji Maeda and Masahiro Hirama*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-77, Japan

Divergent synthesis of the HIJ ring framework 21 of
ciguatoxin 1 starting with oxocane 10 is achieved using the
palladium- and acid-catalysed cyclization reactions of hy-
droxy epoxides.

Ciguatoxin 1 is the principal toxin which causes ciguatera
poisoning.1 Its unique structure and agonist activity against Na+

channels have attracted considerable attention from synthetic
organic chemists.2 Although numerous synthetic studies of
fragments of 1 have been reported, the central medium rings,
such as the F and I rings, have eluded synthesis until very
recently.3,4 We describe herein the first divergent synthesis of
the HIJ ring system of 1 via stereocontrolled palladium- 5 and
acid-catalysed6 cyclization reactions of hydroxy epoxides
starting with the methyl oxocane I ring.3

The palladium-catalysed cyclization procedure5 was exam-
ined first to construct the H and J rings. cis-Epoxide 2 and trans-
epoxide 5, and trisubstituted trans-epoxide 7 were subjected to
a cyclization reaction as models for constructing the J and H
rings, respectively (Scheme 1).† While complete stereocontrol
was realized for 5 to give 6 ( > 99 : 1), lower selectivities were
observed for 2 and 7 to give mixtures of 3 and 4 (5 : 1), and 8 and
9 (2.7 : 1), respectively. The trans-epoxide 15 was therefore
used to construct the J ring, and we chose acid-catalysed
cyclization technology to prepare the H ring. 

Optically active oxocane 103 was converted to 11 via
protection of the primary alcohol as a benzyloxymethyl (BOM)
ether, removal of the acyl groups and subsequent protection of
the 1,3-diol as the acetonide and of the remaining secondary
alcohol as a triisopropylsilyl ether in 83% overall yield (Scheme
2). The BOM group of 11 was removed by hydrogenolysis and
the resulting primary alcohol was converted to the tri-
fluoromethanesulfonate, which was immediately treated with
the lithium acetylide generated from 22 in THF–
dimethylpropyleneurea (DMPU) (6 : 1) at 278 °C 7 to give the
adduct 12 in 68% overall yield. Selective removal of the
ethoxyethyl (EE) group with pyridinium toluene-p-sulfonate
(PPTS) in propanol8 produced 13 in quantitative yield. The
prop-2-ynyl alcohol 13 was partially reduced with sodium
dihydrobis(2-methoxyethoxy)aluminate (Red-Al)9 to give the
trans-allylic alcohol 14. Sharpless asymmetric epoxidation of
14 using d-(2)-diethyl tartrate (DET) gave the corresponding
a-epoxide exclusively, and successive oxidation of the primary
alcohol with a SO3–pyridine complex and Wittig olefination
gave 15 in 88% overall yield. Stereospecific construction of the
J ring was achieved by the palladium-catalysed cyclization.5
Treatment of 15 with tetrabutylammonium fluoride in THF,
followed by solvent exchange to CH2Cl2 and addition of a

catalytic amount of Pd(PPh3)4, gave 16 within 5 min as a single
diastereoisomer in 93% yield in two steps.‡ The stereoche-
mistry of the resulting alcohol with a non-natural orientation
could be readily inverted by reduction of the corresponding
ketone with NaBH4.10

Having completed the synthesis of the I and J ring system, we
were now in a position to construct the H ring. The ester 16 was
reduced with DIBAL-H, the resulting alcohols were protected
as benzyl ethers, and transformation of the acetonide into
p-methoxybenzylidene acetal gave 17 in 90% overall yield.
Regiospecific reductive cleavage of the benzylidene acetal with
DIBAL-H furnished the p-methoxybenzyl (MPM) ether, and
the resulting primary alcohol was converted to the methane-
sulfonate, which was then treated with sodium cyanide to yield
the nitrile 18 in 91% overall yield. Extension of the side chain
via DIBAL-H reduction and Wittig olefination with
(carbethoxyethylene)triphenylphosphorane gave the a,b-un-
saturated ester, which was reduced to allylic alcohol 19 in 98%
overall yield. Sharpless asymmetric epoxidation of 19 furnished
the corresponding hydroxy epoxide and further oxidation to the
aldehyde and Wittig olefination gave 20 in 75% overall yield.
Finally, treatment of 20 with 2,3-dichloro-5,6-dicyano-

Scheme 1 Reagents and conditions: i, Bu4NF, THF; ii, Pd(PPh3)4 (cat.),
PPh3 (cat.), CH2Cl2; iii, Ac2O, pyridine
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1,4-benzoquinone (DDQ) in CH2Cl2 and water (20 : 1) resulted
in cleavage of the MPM ether, and spontaneous cyclization of
the resulting hydroxy epoxide prevailed under the weakly acidic
conditions to afford 21 in 88% yield.§ The overall yield of 21
from 10 was 25% in 28 steps. Thus each step effectively
proceeded in good yield (!95% yield). 

In conclusion, we have demonstrated that the appropriate
combination of stereoselective pyran formation methodologies
allows us to synthesize the central HIJ ring system of 1 starting
with oxocane 10. Further synthetic studies directed towards 1
are in progress in our laboratory. We thank the Uehara
Memorial Foundation, The Naito Foundation, and the Ministry
of Education, Science and Culture, Japan for financial support.

Footnotes
* E-mail: hirama@ykbsc.chem.tohoku.ac.jp 
† Epoxides 2, 5 and 7 were prepared from (2S,3R)-2-ethenyl-3-hydroxy-
tetrahydropyran (ref. 6).
‡ On the other hand, acid-catalysed cyclization (ref. 6) of the 15 gave the
5-exo cyclization product (tetrahydrofuran) exclusively. 
§ Representative data for 21: [a]25

D 22.14 (c 0.35, CHCl3); 1H NMR (600
MHz, CDCl3): d 1.04 (3 H, d, J 7.2 Hz, H57), 1.26 (3 H, s, H56), 1.51 (1
H, ddd, J 13.5, 11.2, 2.7 Hz, H43ax), 1.52 (1 H, ddd, J 14.3, 9.5, 6.2 Hz,
H38ax), 1.59 (1 H, d, J 3.6 Hz, OH), 1.63 (1 H, td, J 12.2, 11.0 Hz, H35ax),
1.74 (1 H, ddd, J 14.4, 10.6, 8.0 Hz, H40ax), 1.84 (1 H, br dd, J 14.3, 3.6
Hz, H38eq), 1.84–1.89 (1 H, m, H39), 1.88 (1 H, br d, J 14.4 Hz, H40eq),
2.12 (1 H, ddd, J 12.2, 5.0, 4.6 Hz, H35eq), 2.28 (1 H, ddd, J 13.5, 4.7, 3.1
Hz, H43eq), 3.20 (1 H, ddd, J 10.6, 9.2, 3.1 Hz, H41), 3.23 (1 H, ddd, J 11.0,

10.5, 5.0 Hz, H36), 3.40 (1 H, ddd, J 10.5, 9.5, 3.6 Hz, H37), 3.46 (1 H, ddd,
J 12.2, 4.6, 3.6 Hz, H34), 3.52 (1 H, ddd, J 11.2, 9.2, 4.7 Hz, H42),
3.56–3.58 (1 H, m, H44), 3.86–3.88 (1 H, m, H45). The relative
stereochemistry was unambiguously determined by NOE experiments. 
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Scheme 2 Reagents and conditions: i, BnOCH2Cl, Pri
2EtN, Bu4NI (cat.), (CH2Cl)2, 40 °C, 99%; ii, K2CO3, MeOH, 99%; iii, 2,2-dimethoxypropane, PPTS

(cat.), MeCN, 85%; iv, Pri
3SiOSO2CF2, 2,6-lutidine, (CH2Cl)2, 230 °C, quant.; v, H2, Pd(OH)2–C (cat.), AcOEt, 87%; vi, (CF3SO2)2O, Et3N, (CH2Cl)2,

215 °C; vii, HC·CCH2C2H4OEt 22, BuLi, THF–DMPU (6 : 1), 278 °C, 78% (2 steps); viii, PPTS (cat.), PrOH; ix, Red-Al, Et2O, 0 °C to room temp., 97%
(2 steps); x, (2)-DET, Ti(OPri)4, ButOOH, molecular sieves 4A, CH2Cl2, 220 °C, 97%; xi, SO3·pyridine, Et3N, DMSO, (CH2Cl)2, 0 °C to room temp.; xii,
Ph3PNCHCO2Me, toluene, 94% (2 steps); xiii, Bu4NF, THF; xiv, Pd(PPh3)4 (cat.), PPh3 (cat.), CH2Cl2, 93% (2 steps); xv, DIBAL-H, CH2Cl2, 278 °C, 98%;
xvi, BnBr, NaH, DMF–THF (1 : 1), 0 °C, 92%; xvii, p-MeC6H4SO3H·H2O (cat.), MeOH; xviii, p-MeOC6H4CH(OMe)2, PPTS (cat.), (CH2Cl)2, quant. (2
steps); xix, DIBAL-H, CH2Cl2, 240 °C, 97%; xx, MeSO2Cl, Et3N, CH2Cl2, 0 °C, quant.; xxi, NaCN, 18-crown-6 (cat.), DMF, 50 °C, 94%; xxii, DIBAL-H,
CH2Cl2, 260 °C; xxiii, Ph3PNCMeCO2Et, toluene, 98% (2 steps); xxiv, DIBAL-H, CH2Cl2, 278 °C, quant.; xxv, (2)-DET, Ti(OPri)4, ButOOH, molecular
sieves 4A, CH2Cl2, 220 °C, 90%; xxvi, SO3·pyridine, Et3N, DMSO, (CH2Cl)2, 0 °C to room temp.; xxvii, Ph3P+CH3Br2, NaN(SiMe3)2, THF, 0 °C, 83%
(2 steps); xxviii, DDQ, CH2Cl2–H2O (20 : 1), 88%.
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